5. Fokker-Planck Equation for One Variable;
Methods of Solution

We now want to discuss methods for solving the one-variable Fokker-Planck
equation (4.44, 45) with time-independent drift and diffusion coefficients,
assuming D@ (x) >0

OW(x,t)/0t =LgpW(x,t) = —(8/0x)S(x,1), 5.1)

Lep(x) = - Ba DY)+ = D). 5.2

In (5.1) S is the probability current (4.47).

The stochastic Langevin equation (3.67), for instance, with Gaussian J-cor-
related Langevin forces and time-independent 4 and g leads to (5.1, 2) with
D@ (x) and DMV (x) given by (3.95).

The Smoluchowski equation (1.23) describing one-dimensional Brownian
motion of a particle in the potential f(x) in the high-friction limit is a special case
of (5.1, 2), where the drift and diffusion coefficients are given by

DY=(my) 'Fx)= —(my)"'f (x), (5.3)
D®=kT(my) '. (5.9

In (5.3) F(x) = —f (x) is the force due to the potential f(x), m is the mass of the
particle, y is the friction constant, k is Boltzmann’s constant and T is the tem-
perature of the surrounding heat bath. The derivation of this Smoluchowski
equation from the two-variable Fokker-Planck equation in position and velocity
space (i.e., Kramers equation) is discussed in detail in Sect. 10.4.

5.1 Normalization

By a suitable transformation x’ =y = y(x) the x-dependent diffusion coefficient
can be transformed to an arbitrary constant D > 0. For the one-variable case this
transformation according to (4.132) reads
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D'®P=p-= (jy)p‘zl(x) (5.5)

Thus this transformation is given by

»=y(x) = {|/D/DP&) dé . (5.6)
X0

The transformed drift coefficient then takes the form [see (4.131)]

2
D' = 2 pOix) + £ D)
dx dx

_ D g1 dD%(x)
I/T’“m {D ) L (5.7

and the transformed Fokker-Planck equation reads (D = const)

, 2
w0 _ [_iD'mmwa—] W, 59
ot oy ay*

where W' is given by, cf. (4.119),
W'=J-W=(dy/dx) 'W=)/D®x)/DW. (5.9)

In (5.7 and 9) x = x(») has to be expressed by the y variable according to (5.6).
Without loss of generality we may thus treat the equation with constant diffusion
coefficient, i.e.,

2
6W f’( )+Da— W= —iS(x,t), (5.10)
ot ax? ox

where S is the probability current.
Here we have introduced the potential

fx) = - fD“’(x')dx' : (5.11)

Up to a constant the potential (5.11) agrees with the potential f of the
Smoluchowski equation.

Because D is arbitrary, we may use D = 1. This normalization is, however,
not very convenient if the low-noise limit D — 0 is considered and we therefore
retain the constant D.

Transformation (5.6) can also be done in the Langevin equation, see (3.69,
70, 95).
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5.2 Stationary Solution

For stationary solutions the probability current in (5.1) must be constant. Thus,
if the probability current vanishes at some x the current must be zero for any x.
Then for S=0

D (x)

DD (x) Wy(x) = DO (x) Wy (x) = a—D(Z’(x)W(x) (5.12)

We can immediately integrate (5.12), yielding

Ny DD (x") o0
Wy (x) = —(27(—)— p<§ D) dx' ) =Ne (5.13)
where N, is the integration constant, which has to be chosen such that W is
normalized. In (5.13) we introduced the potential

x D{”(x!}

P(x) = lnD(E)(x) — IB(_EJ(—x’_)- x' (5.14)

_ For the case of the Smoluchowski equation (5.3, 4) we may put @(x) =

f(x)/(kT) and for (5.10) &(x) = f(x)/D because the potential d(x) is defined
only up to an additive constant and therefore the InD® term may be omitted.
Introducing this potential the probability current may be written in the form

S, )= -DPx)e “’fﬂ [e PO W (x, 1)] . (5.15)

In the stationary state, where S is constant, we thus have for arbitrary S

e P

= ~PM _ge~ )
Wo(x) = Ne™ #9520 DO

dx’ . (5.16)

One of the integration constants in (5.16) is determined by the normalization
[Wox)dx=1, (5.17)

the other constant must be determined from the boundary conditions, so the
problem arises as to which boundary conditions must be used. (For a further dis-
cussion of boundary conditions, see Sect. 5.4.) For problems where x extends to
+ oo, we require that the integral (5.17) exists. In that case, W and also S must
vanish at + o (natural boundary conditions) and therefore S = 0 for every x. If
the stochastic variable £ cannot reach values smaller than x,;,, we require that the
probability current must be zero at xp,. In the stationary state, S then also
vanishes for every x, i.e., (5.16) reduces to (5.13). There may, of course, also be
other boundary conditions. If for instance x is an angle variable we usually
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require that the distribution function is periodic. In that case, S is determined by
this periodicity condition. The current will then be zero only if f(x) is also
periodic. For a further discussion of boundary conditions, see Sect. 5.4.

An important question is whether every initial distribution finally decays to
the stationary distribution. For some restrictions of the drift and diffusion coef-
ficients and of the boundary conditions one can prove that any two solutions of
the Fokker-Planck equation agree for large times. Thus if a stationary solution
exists, every solution must finally decay to that solution. We postpone the deriva-
tion of the proof to Sect. 6.1, where a proof is given for the general N-variable
case. We further show in Sect. 5.4 that all eigenvalues with the exception of the
stationary eigenvalue A = 0 are larger than zero, which also answers the above
question positively.

5.3 Ornstein-Uhlenbeck Process

Nonstationary solutions of the Fokker-Planck equation (5.1, 2) are more
difficult to obtain. A general expression for the nonstationary solution can be
found only for special drift and diffusion coefficients.

Wiener Process

A process which is described by (5.1, 2) with vanishing drift coefficient (D® = 0)
and constant diffusion coefficient D®(x) = D is called a Wiener process. The
equation for the transition probability P= P(x,¢ | x',¢t') is then the diffusion
equation

2
oP _,0P (5.18)

at ax?
with the initial condition
Px,t'|x',t")=0(x—x"). (5.19)

The solution for ¢>¢' reads [5.1]

rogr 1 (x_x’)z
Px,txit'y= ——~ -— 7 . 5.20
Gt ) VarD(i—1") exp< 4D(t—t’)> C-20)

The general solution for the probability density with the initial distribution
W(x',t") is then given by

W(x,t)=[P(x,t]|x',t") W(x',t")dx' . (5.21)

Thus the transition probability serves as the Green’s function of (5.18).
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For the Ornstein-Uhlenbeck process the drift coefficient is linear and the
diffusion coefficient is constant, i.e.,

Ornstein-Uhlenbeck Process
DY(x)= —yx; DP(x)=D=const. (5.22)

With these coefficients the Fokker-Planck equation is the same as the
Smoluchowski equation for a harmonically bound oscillator. In this case
Y= w3/m is positive.

The equation for the transition probability now reads

2
8P, pyip 2 p
ot ox ox

(5.23)

with the initial condition (5.19). The solution of (5.23) is best found by making a
Fourier transform with respect to x, i.e.,

P(x,tx',t')y = Q2n) ' [e** Pk, t|x',t")dk . (5.29)

The equation for the Fourier transform is given by (replace 8/8x by ik and x by
18/0k)

—_ P-DK’P, (5.25)
at ok

which is simpler than (5.23) because only first-order derivatives with respect to k
occur. Because of (5.19) the initial condition for the Fourier transform is

P(k,t'|x',t")=e k", (5.26)

The first-order equation (5.25) may be solved by the methods of characteristics
[5.1]. The solution of (5.25) with the initial condition (5.26) reads (£>t')

P(k,t|x',t") = exp[—ikx'e """ —DKk3 (1 —e 27" /2 )], (5.27)

as may easily be checked by insertion. By performing the integral in (5.24) [cf.
(2.32)] we finally get the Gaussian distribution (¢ >¢')

o4 Yy ]’(x_e e 'l")xr)z
P(x,t|x',t") = —— exp| — £ . (5.28
xtlx't") l/an(l_e_zml,)) p[ 20— Ty (5.28)

In the limit y— 0 we recover the result (5.20) for the Wiener process.
Equation (5.28) is valid for positive and negative y. For positive y and large
time differences y(t—¢') > 1, (5.28) passes over to the stationary distribution
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Wq(x) = |/y/Q2 nD) exp[— yx*/(2D)] (5.29)

in agreement with (5.13). For y =0 no stationary solution exists.

The Ornstein-Uhlenbeck process may equally well be described by a linear
Langevin equation of the type (3.1) with Gaussian Langevin forces. The
stochastic variable and the Langevin force are then connected by the linear trans-
formation (3.7). Because for a linear transformation of variables Gaussian distri-
butions will remain Gaussian (see the remark at the end of Sect. 2.3.3), the transi-
tion probability must also be a Gaussian distribution.

Joint Probability Density

In the stationary state the joint probability density for the variables £(¢) and &(¢')
may be expressed by P and W,. For t=¢'

Ws(x,t;x',t") = P(x,t|x',t") Wy(x') , (5.30)
and for r=t/,
Wax, t;x',t") = P(xX', t' |x, 1) Wy(x) . (5.31)

By inserting (5.28, 29) in (5.30, 31) we obtain in both cases

Wix,t;x',t') =

y x24x'22xx e VIl
pl\ —V

——— €X 7
27D]/1—e 2717 2D(1—e~211=1)

For large time differences y|t—¢'|> 1, (5.32) decomposes into a product of two
stationary distribution functions (5.29), meaning that the distributions for x and
x" become independent.

(5.32)

5.4 Eigenfunction Expansion

In this chapter we are looking for nonstationary solutions of (5.1, 2). A
separation ansatz for W(x,1t)

W(x,t) = p(x)e (5.33)
leads to
Lipp=—2gp. (5.34)

Here ¢(x) and A are the eigenfunctions and eigenvalues of the Fokker-Planck
operator with appropriate boundary conditions. Before we proceed it is
necessary to talk about boundary conditions.




102 5. Fokker-Planck Equation for One Variable; Methods of Solution

Boundary Conditions

If the potential @(x) (e.g., f(x) for x-independent diffusion) jumps to an infinite
high positive value, the particles cannot penetrate in the region x > xp, and
therefore the probability current S must vanish at that point. The infinite high
potential then acts as a reflecting wall (Fig. 5.1a). If the potential jumps to an
infinite large negative value it follows from the continuity condition for the prob-
ability current that e ®W should vanish at this point (5.84). In this case we talk
about an absorbing wall (Fig. 5.1b). For the left boundary at x = x;, similar
considerations are valid. Because of the two possibilities at each side, there are
four possibilities B1...B4, as shown in Table 5.1.

For finite X, and X, € ®W = 0 requires that W should be zero. If @(x)
goes to plus infinity for x— + o (e.g., @ = ax?), we have a reflecting wall at
Xmax— + o and x;,-» — o and the probability current should vanish there. It
then follows from the Fokker-Planck equation that ]°_°°° W(x,t)dx is constant
(4.48), and that this constant is equal to 1, if it is initially equal to 1. This
normalization requires that the distribution function W goes to zero for x-- + oo.
(As seen for the parabolic potential in Sect. 5.5.1 e ® W, however, remains finite.)
This boundary condition is called natural boundary condition. It may also
happen that @(x) goes to minus infinity for x- + o or for x-- — o or for both
x-— + oo, In this case we require in analogy to (5.84) that e ® W is zero at x--» + o
or at x— — o or at both x— + o, respectively. As shown in Sect. 5.5.2 for the
inverted parabolic potential, W and S are then finite but e ®W vanishes at
Xx-»+ oo, Thus for the boundary condition in Table 5.1 X, Xmax OF both can
reach — oo, + o or + oo, respectively.

To obtain eigenvalues by numerical integration for potentials, where @(x)
goes to plus infinity for x--» + oo, we may require that S = 0 at x = + 4 for some
large A. Alternatively, we may require that W= 0 at x = + A. Though at finite
A the eigenvalues for the S = 0 condition will be different from the eigenvalues
of the W =0 condition, both eigenvalues will coincide in the limit A—oo.
(Obviously, we cannot require that both S and W are zero at x = + A with
finite A.)

Besides these boundary conditions we may have periodic boundary condi-
tions with period L. If, for instance, x is an angle variable and if we do not distin-
guish whether a full rotation is made or not, the distribution function and
therefore also the probability current must be periodic with period L = 2 7. These
periodic boundary conditions can be fulfilled only if the drift and diffusion coef-

T X
X max X

Fig. 5.1.

(a) (b) Reflecting (a) and absorbing (b) wall
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Table 5.1. Boundary conditions discussed in the text
S = 0 (reflecting wall) e ? W = 0 (absorbing wall)
Xnin
S =0 (reflecting wall) B1 B2
e? W = 0 (absorbing wall) B3 B4

Natural boundary conditions:

S§=0 for Xpp—=>—®, Xpax—2>t+t®
(i.e. B1 for Xppu—=—o, Xpax—+®)

Periodic boundary conditions:
Wx,t)y= W(x+L,t), S t)=Sx+L,?)

ficients are also periodic with the period L. An example of this boundary condi-
tion is given in Sect. 11.3.

A stationary solution can occur only for the boundary condition B1 (this
includes natural boundary conditions) or for periodic boundary conditions. In
the first case, the stationary solution of the Fokker-Planck equation is given by
(5.13), for the other, by (5.16).

Transformation of the Fokker-Planck Operator
The Fokker-Planck operator (5.2), which may be written in the form, cf.
(5.1, 15),

L= DOy 2@ 9 com (5.35)
ox ox

is obviously not a Hermitian operator. If the two functions W, and W, both
satisfy the same boundary conditions listed in Table 5.1, we have

Xmax
| Wie®Lgp Wydx

min

Xmax a 6
= j H/Ieﬁi___D(Z}e— @__e(i)%dx
Xmin Ox Ox
"‘Inax
= | [Ea_ Wle""} D@e-? [aie"”%} dx
Xmin X X
'rmax
=ik erw—Q—D(zle“’*—a— We%dx
Ko ax ox
xmax
= | Wee®Lpp Widx. (5.36)

Xmin
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In deriving the third and the fourth line we have used partial integration and

*max Xmax
me%‘z‘e"’ﬁ.ed’wz =—We®s,| =0. (5.37)
2 ox 1 2 |
Xmin Xmin
Hence for all boundary conditions of Table 5.1 the adjoint of the operator e ?L ¢p
is given by
(e’Lgp) " =Lfpe?=eLypp, (5.38)
i.e., e L pp as well as
L :e—wzeprFPe—wzzeszFPe—wz (5.39)

is an Hermitian operator.

Orthogonality of Eigenfunctions

The eigenvalues may be discrete or continuous or both. In the following we use
the notation for discrete eigenvalues denoted by an index n. If continuous eigen-
values occur, one should proceed in the same way as discussed in quantum
mechanics [5.3], i.e., the Kronecker symbol d,, has to be replaced by the &
function and the occurring sums by integrations. If ¢,(x) are the eigenfunctions
of the Fokker-Planck operator L gp with the eigenvalue 4, (5.34), the functions

Walx) = e "9, (x) (5.40)
are eigenfunctions of L with the same eigenvalues 4,
Ly,=~A,,. (5.41)

Because L is an Hermitian operator, the eigenvalues are real and two eigenfunc-
tions yy and y, with different eigenvalues A; + A, must be orthogonal. If we
normalize the eigenfunctions we thus have the orthonormality relation

*max Xmax
| WaWmdx= [ €%0,0mdx = 6pm- (5.42)
Xmin Xmin

Positivity of Eigenvalues

By using the first and the third line of (5.36) with W) = W, = ¢,(x) and (5.35)
we get
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Xmax *max
§ one’Lppp,dx= [ w,Ly,dx= -4,
Xmin *min
xmﬂx a 2
=~ (a— w) DPe *dx 0. (5.43
*min x

The equals sign in (5.43) is valid only for the stationary solution
Wo(x) = |/Ne @2, }3,=0. (5.44)

All other eigenvalues A, (n = 1) must be larger than zero. For finite potentials
@(x) a stationary solution cannot exist for the boundary conditions B2— B4.
Thus all eigenvalues are larger than zero for these boundary conditions. For
(5.44) to exist under natural boundary conditions, @(x) must be positive and
increase with increasing |x |at least asymptotically.

Other eigenfunctions with 4,, > 0 can exist for asymptotically negative @(x),
with appropriate boundary conditions, see the example in Sect. 5.5.2.

Completeness Relations

Eigenfunctions of Hermitian operators usually form a complete set [5.1, 2, 4].
The completeness relation for the eigenfunctions y, or ¢, may be expressed by

o(x—x")= gw,,(x) Wa(x")
= e YT 4, () pu(x')
= e¢(X) Z (pn(x) (ﬂn(xl)
=e?™) Y 9,(x) pu(x’) . (5.45)

Transition Probability Density
By using the last expression of (5.45) to represent the J function and the formal
solution (4.17) for the Fokker-Planck operator, we immediately obtain the
expansion of the transition probability into eigenfunctions (f=t¢')
P(x, t]x',t') = elep®@U=1) 5(x _x")
=e M) p elrr®=00, (x) g, (x")
n

= e¢(X') Z (0,,()() (p”(xl)e—ln(l—p)
n

= 222 gy, (x) yy(x') e MO0, (5.46)
n
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Joint Probability Density

In the stationary state the joint probability density for the variables £(¢) and &(¢')
may be obtained from (5.30, 31). If the stationary distribution W(x) = [w,(x)]*
exists, we have

W (x, 15X, 1") = wo(x) WoX') T walx) wpx')e 411, (5.47)
n
The symmetry of W, i.e., Wh(x,t;x',t') = Wh(x',t';x,t), is immediately seen.

Explicit Form of L

Because of (5.35) the transformed operator (5.39) takes the form

L=e¢/2a%]/D(2)e‘¢/2] /D(z)e—wza_axewzz _éa, (5.48)

where a and @ are defined by

a=1/DPe-229 .on
ox
@
{12
X X

. a -
a=—e‘ma /D@97
X

(2)
__ 0 Du>+i(ﬂ__ Dm)/l/—pm, (5.50)

ax 2 dx

The second lines follow by use of (5.14).

For natural boundary conditions @ and & are the adjoints of each other, i.e.,
d=a". It then also follows from (5.48) that all eigenvalues A must be non-
negative. By inserting the last expressions for @ and @ into (5.48) we get the
operator of the Sturm-Liouville equation [5.1, 2, 4]

L= iomi— v, (5.51)
ox Ox

2 2 (1) 202
V(x):]— dD —-pWm /Dl21+i dp™ 1 d'D ; (5.52)
4\ dx 2 dx 2 dx?

5.4 Eigenfunction Expansion 107

The eigenvalues are usually arranged in increasing order
0§/{0<11<12<.... (5.53)

The first eigenfunction y, has no zeros, the next eigenfunction w4 has one zero
and so on [5.2]. If a stationary solution exists the first eigenvalue A is zero;
otherwise it is larger than zero. Whereas a degeneracy cannot occur for the
boundary conditions B1 — B4, it can occur for periodic boundary conditions, see
Sect. 11.3.2 for an example.

Transformation to a Schrodinger Equation

By using a proper transformation of the variable, the one-variable Fokker-
Planck equation can always be transformed to (5.10) where the diffusion con-
stant is x-independent. Then L has the same form as the negative single-particle
Hamilton operator in quantum mechanics, i.e.,

62
L =D~ %) (5.54)

with the potential

Vs(x) = $Uf (1D = 31" (%) . (5.55)
For the potential @(x) we may now use

D(x) = f(x)/D (5.56)
because we can neglect the additive constant InD (5.14). The form (5.55) guar-
antees that the eigenvalue of the stationary solution y, = 1/]T/exp[ —f(x)/(2D)]

is zero. The eigenvalue problem (5.41) is the same as the eigenvalue problem of
the Schrodinger equation. The operators @ and @ simplify to

3 1 /() 3 1 fx)\ d 1 fx)
“ ox | 2 /D Vexp( 2 D>8xexp<2 D>
(5.57)

PRV AC _,@expG Lg))gexp<_i £<x_>>

ax 2 /D 2 ax 2 D

and their commutator is given by

ad—aa=f". (5.58)

If the transformation (5.40) is applied to the probability density W(x,t), the
Fokker-Planck equation (5.10) is formally equivalent to the time-dependent
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Schrodinger equation with imaginary times fg,5q = —i#4¢ and with a mass given
by Mg = B2/ (2 D). Transformation of an equation of the type (5.1, 2) to the
Schrodinger form is also found in [5.2, 4].

5.5 Examples

We now want to discuss the eigenvalues, eigenfunctions, the potential f(x) and
the potential V5(x) of the corresponding Schrodinger equation for some
examples. We first notice that every soluble example of the Schrédinger equation
may serve as a soluble example of the normalized Fokker-Planck equation (5.10)
[5.5—9]. From (5.44, 56) the potential f(x) of the normalized Fokker-Planck
equation is then expressed by the lowest eigenfunction y(x) of the Schrodinger
equation

Jf(x) = =2DInyy(x)+DInN

S (x) = = 2D wo(x)/ wo(x) -

(5.59)

Here we have assumed that the stationary solution exists, i.e., that the eigenvalue
Ao is zero. As will be seen from the third example, simple forms of the potential
V5(x) of the Schrodinger equation may lead to complicated forms of the
potential f(x) of the Fokker-Planck equation. This is also seen in [5.6, 7] where
simple bistable models for V5(x) (potential box with a square barrier in the
middle) lead to more complicated expressions for f(x). In Sect. 5.7 it is shown
that for simple expressions of f(x) (i.e., a box with a rectangular barrier in the
middle) eigenvalues and eigenfunctions can also be obtained.

5.5.1 Parabolic Potential

For the parabolic potential of the Fokker-Planck equation
fo)y=1yx*; y>0 (5.60)

the potential (5.55) of the Schrédinger equation is also parabolic

V(x) = y<4LDx2— %) . (5.61)

Introducing the boson operators similar to @ and 4 in (5.57)
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i i ]

b*:i_=*(——+§); bb*—-b*b=1, (5.62)
Vy V2 \ 8¢

the transformed Fokker-Planck operator (5.48) takes the form

L=—-yb*h. (5.63)

Eigenvalues and normalized eigenfunctions are given by the well-known expres-
sions [5.3]

Ap=yn; n=0,1,2,...
4

Wo(x) = |/ L ¥ (5.64)
2nD

4
_eH ]/L 1 o (5 82
Wn(x) W |//0(X) 27D 1/2"_:1_' n(é)e ’

where H, (x) are the Hermite polynomials.
If we apply the following summation formula for the Hermite polynomials
([5.10]; |er| < §)

oo n

3 % H,(0)H,0) = —— exp[]“fz(xy—axz—ayz)]. (5.65)
—a0

o
n=0 n! |x1_4af

we recover from (5.46) the transition probability (5.28) and from (5.47) the joint
distribution (5.32) for the Ornstein-Uhlenbeck process.

5.5.2 Inverted Parabolic Potential
For the inverted parabolic potential

f)=-19x* >0 (5.66)
no stationary solution exists. Nevertheless we can make the transformation

(5.39, 40) with @(x) =f(x)/D = — 1 9x*/D and obtain the following potential
Vs(x) of the Schrodinger equation:

_ {7y 1 _
Ve(x) =% <ﬁx2 - 7) +7. (5.67)

A comparison with (5.61) shows that the normalized eigenfunctions are the same
as in Sect. 5.5.1 with y replaced by y, i.e.,
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4
= }_’ 1 = o~ FL2 = :T’
wn(x) = t‘H”(é)e i 5 é= e (5.68)
ADn 1/2 Tpt 2D

and that the eigenvalues are raised by 7, i.e., they start with o=y
A, =P(+1); n=0,1,2,.... (5.69)

(By formally changing y to  in (5.62) and & in i€ it is seen that —a/]/)'z now
becomes a creation operator b* and correspondingly that —d/]/§ now becomes
an annihilation operator b, cf. Sect. 5.8.)

Using both (5.46, 65) we obtain

= = —-y@-t Y
P(x,t|x',t") = l/ Y . exp<— y(xe™” ) >e_i'("”)
’ ’ o= 2Ft—t") a2t ’
2nD(1—e ) 2D(1-e¢ ) (5.70)

which is identical to (5.28) if y in (5.28) is replaced by — y. Though no stationary

solution exists for an inverted parabolic potential, eigenfunctions with the

boundary condition B4 in Table 5.1. for xpa— + o do exist, they can be
min

normalized according to (5.42) and they may be used to calculate the transition

probability. (The probability current S for these eigenfunctions is finite for

X—+to00)

5.5.3 Infinite Square Well for the Schrodinger Potential

One of the simplest eigenvalue problems for the Schrédinger equation is the rec-
tangular-well potential with infinitely high walls, Fig. 5.2. The lowest eigenfunc-
tion wo(x) = a =2 cos[nx/(2a)] for —a<x<a leads to the potential (5.59)

f(x)= —2DIn{cos[nx/(2a)]} (5.71)
of the Fokker-Planck equation, plotted in Fig. 5.2. [In(5.71) we have normalized
the potential by f(0) =0, i.e., N=a~ '] At x = +a the potential f(x) becomes
singular. It may easily be checked that the probability density as well as the prob-

ability current are zero at x = + a. Higher eigenvalues and normalized eigenfunc-
tions of the transformed Fokker-Planck operator (5.54) are

even solutions (n=1,2,...)
han=Dnta ¥ (n*+n), (5.72)

Wan(X) = a2 cos[(n+1/2) nx/a) , (5.73)
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f(x) Fig. 5.2. Rectangular-well potential
2D V(x) and the corresponding potential
" f(x) of the Fokker-Planck equation,
(5.71)
V|x)
}
a 0 als o - A
2D
4La
odd solutions (n =1,2,...)

Aon_1 =Drta Y (n*-1/4), (5.74)
Wan-1(x) = a~sin(nnx/a) . (5.75)

The transition probability for the potential (5.71) is obtained by inserting
(5.72—-175) into (5.46).
5.5.4 V-shaped Potential for the Fokker-Planck Equation
If the potential of the Fokker-Planck equation is given by the V-shaped form
f&x)=Dklx|; k>0, (5.76)
the Schrodinger potential Vg5(x) consists, see (5.55), of an attractive J potential
Vs(x) = Dk*/4-Dk d(x) . (5.77)
Only the stationary eigenfunction
wo(x) = |/x/2e FRV2 (5.78)

has the discrete eigenvalue 4,= 0. The other eigenvalues form a continuum
(k >0)

Av=Dx*/4+Dk*; (5.79)

their eigenfunctions normalized to the J function are [5.11]
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Wi(x) = [(4k2+ k) 1] ~V2 2k coskx — ksink |x|)

(5.80)

“VZinkx .

Wix)=m
The symbols s and a indicate even or symmetric and odd or antisymmetric eigen-
functions.

The transition probability for the potential (5.76) is obtained from (5.46),
where the sum in (5.46) must be replaced by an integration over k for the con-
tinuous eigenfunctions while the discrete eigenfunctions must be retained as a
single term.

5.6 Jump Conditions

For the Schrédinger equation one often uses potential models where Vs(x) jumps
at certain points of x and is constant elsewhere. One may ask whether such
models may also be used for the potential f(x) of the Fokker-Planck equation.
As is seen from (5.55), jumps of the potential f(x) lead to higher singularities
(first derivative of the d function and square of the J function) for the potential
Vs(x) than ¢ function singularities which are usually treated in quantum
mechanics. We first derive the jump conditions for the unnormalized Fokker-
Planck equation (5.1, 2) and then specialize the result to the normalized Fokker-
Planck equation (5.10).

Finite Jump

We assume that a finite jump of the potential @(x) (5.14) occurs at x=0.
A finite jump may occur either if the diffusion coefficient D®(x) has a finite
jump or if the drift coefficient D ®(x) has a J function singularity. If we assume
that the time derivative of the probability density is finite at the jump, it follows
from the continuity equation (4.46) that the probability current (5.15) must be
continuous (0/8x is denoted by a prime)

S(+0,0) = =DP(+0)[®'(+0) W(+0,1)+ W'(+0,1)]
=S(=0,t)= —DP(-0)[®'(—0)W(=0,0)+ W'(-0,0)] . (5.81)

Here lin}) f(+ |€|) was abbreviated by f(+0). (If the probability current would
E—

not be continuous at x = 0 this would mean that at x = 0 particles are added or
removed, i.e. that we have a probability source or sink at x = 0.) Furthermore it
follows from (5.15) that we may write

ai [e®@W(x, )] = —S(x,1)e*¥/DP(x).
X
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By formally integrating this expression we get
£
e PO (10, 1)— e 2COW(=0,1) = — lim S, 1)e®/DP(x)dx.
&0 —¢

If only finite jumps in @ (x) and D(z)(x) > 0 occur, the integral vanishes for e -0,
i.e., we have

e¢(+0)W(+0’1):e'p(_O)W(—O,t). (5.82)

Equations (5.81, 82) are the jump conditions for the probability density.

Infinite Jumps

If the integral in (5.14) is finite for x =< x,, but has an infinite positive value for
X > Xpax No diffusion into the region x > x,, can occur. Therefore the prob-
ability current (5.15) must be zero for x = x,,, i.e.,

D' (X ) Wkmaw ) = — W Xpax 1) - (5.83)
If the integral in (5.14) is finite for x < x,,, but has an infinite negative value for
X > Xnax and if we assume that W(x,¢) is finite for x > x,,, it follows from the
jump condition (5.82) that exp(®) W must be zero for x -» x,,, i.e.

exXp[ D (Xmax — 0)] W(Xpmax— 0, 1) = 0.

For finite @ (x,— 0) this reduces to the condition that the probability distribu-
tion itself must be zero for x —» x4,

W(Xmax—0,2) =0. (5.84)
Similar results are valid if the jump occurs at xp,.

Jump Conditions for the Eigenfunctions

For the normalized equation (5.10) the jump conditions for the eigenfunctions
(5.40) of the operator (5.54) corresponding to (5.81 —84) then take the form
[5.12]

f(+0) , S (+0)
- (40 A(+0
eXp( 05 >[W (+0)+ 5 Wa(+0)]

—exl) i lﬂ _0 + l[/ _0 .813.
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f(+0) f(=0)
ex (+0) =ex 2(—0), 5.82a
p< T (+0)=exp 5p 1Y (=0 ( )
2Dy (max—0) = —f" (X max— O WX max—0) , (5.83a)
WnXmax—0) = 0. (5.84a)

These jump conditions are valid for any potential with continuous values and
derivatives between the jumps. However, if the potential is linear between the
jumps, the transformed potential V5(x) is a constant and the solutions of the dif-
ferential equation are immediately obtained between the jumps. Each jump con-
dition then leads to one homogeneous equation, the whole set of those equations
having only nontrivial solutions if the determinant is zero. This condition is in
general a transcendental equation, which determines the eigenvalues and eigen-
functions. For simple potential wells the transcendental equation may be solved
analytically, as in the following example.

5.7 A Bistable Model Potential

As an example we treat the following bistable rectangular potential well (Fig. 5.3)
fx)=/fo, |x|sL/2
fx)=0, L2<|x|sL (5.85)
f(x)=0, x>L.

It turns out that for this special bistable model all eigenvalues and eigenfunctions

can be obtained analytically. (If the width of the barrier in the middle is not half
the total width of the box a transcendental equation has to be solved.)

flx)

]
No|—

Fig. 5.3. Bistable potential model
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With the help of the jump conditions (5.81a—83a) we easily obtain the
following eigenvalues and normalized eigenfunctions:

even eigenfunctions and their eigenvalues

Ay =(@2D/LH(2n); (n=0,1,2,...) (5.86)
Yo - [L(1 +e fUID)] - i.f’ze—f{x}.-’{ZD} , (5.87)
Van = /2IL(1 +e /D) 72 /0D cos2nnx/L ;
n
n=1,2,3,...), (5.88)
Ainir = (@*D/LH@2n+1)*; (n=0,1,2,...), (5.89)
Wans2 = J2IL (1 +e/0/P)| ~12e/V/@D) co5(2n+ 1) nx/L | (5.90)

odd eigenfunctions and their eigenvalues

Ains1 = (2D/LHQ2n+v)?; n=0,1,2,..., (5.91)
|//4,,+1=L‘1/zsin[(2n+v)xn/L]; 0<sx<L/2 (5.92)
Wans1 =L "2cos[@n+v)(L-x)n/L); L/2<x<lL '
Ain_y = (@?D/LHY@n—v)*; n=1,2,3..., (5.93)
Wan_1 =L V% sin[@n—v)xn/L]; O0=<x<L/2

=t (5.94)
Wan1=L Y*cos[@n—v)(L—x)n/L); L/2<x<L.

Here v is defined by

v=(2/n)arctan{exp[—fo/(2D)]};0<v<1. (5.95)

Some of the lowest eigenvalues and their eigenfunctions are shown in Figs. 5.4, 5.
In particular, the lowest nonzero eigenvalue reads

Ay = (4D/L*)[arctan{exp[ - fo/(2D)]}]?, (5.96)

which in the limit of large barrier heights is proportional to the Boltzmann
factor, i.e.,

Ay =@D/L*) exp(—fy/D) for fo/D>1. (5.96a)
Some other bistable models and a soluble metastable and a periodic potential

model are given in [5.12]. The last model is also treated in Sect. 11.3.2. By
inverting the potential (5.85) one also gets a metastable model (Sect. 5.8).
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5.8 Eigenfunctions and Eigenvalues of Inverted P otentials

In addition to the normalized Fokker-Planck equation (5.10) we consider this
equation for the inverted (upside-down) potential

fx) = -fx, (5.97)
but with the same x-independent diffusion constant D. As easily seen from
(5.57), the operators a and a for the inverted potential are connected with the
operators ¢ and 4 by the simple relations

a=-4; a=-a. (5.98)
Therefore the operator (5.48) for the inverted potential may be written as

L=_-da=—-aa. (5.99)
We now apply the operator a to the eigenvalue equation L w, = —A,w,, i.e.,

aLly,= —aday,=Lay,= —Aray,. (5.100)

Thus if aw, is not identical to zero it is an eigenfunction of the operator
belonging to the inverted problem.

The connection between the nth eigenfunction w,, of the original problem and
the mth eigenfunction y,, of the inverted problem depends on the boundary con-
ditions. Therefore we first discuss the transformation of the boundary condi-
tions. Using ¢,(x) = exp[—(1/2)f(x)/D]¥n(X), pm(x) = exp[—(1/2)f(x)/D]
- Wn(x), (5.57) and y,,~a w, the probability current may be written in the form

fx)\ o f(x)
S(x) = — — ol ity
(x) Dexr>< b )ax eXp< D )(on(x)]
_Dexp <‘_ f(x)) exp<_ J) ) k) (exp (f(x)) Wn(x)]
2D 2D ) ox | 2D
- Dexp(—g’g)aw"(x)

exp < - “’;(;’ ) m(X) = €Xp (5%3) ().

Thus the boundary condition

flxp)\ 0 f(x)
=—-D = - - Aot
S(x0) exp < ) = {exp ( ) (p,,(x)]

l

=0

X=X
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for ¢, (x) is transformed to the boundary condition
Flxo) \ -
exp ( “—f(D—“)) Pmlxo) =0

for the eigenfunction ¢,,(x). Similarly the boundary condition

exp (f ﬂ;’) Pnl0) = 0

for ¢,(x) is transformed to the boundary condition

S(x;) = —Dexp ( - L;")—> —;—} {exp (“—fg—}) @rn(x)]

for the eigenfunctions ¢,, of the inverted potential, in agreement with Table 5.1.
(By inverting the potential a reflecting wall is transformed to an absorbing wall
and vice versa). As may be checked the jump conditions for y, and the jump
conditions for ,, are connected according to

=0

X=Xq

(5.81a) & (5.82a)
(5.82a) & (5.81a)

for y, fory,,.
(5.83a) & (5.84a)
(5.84a) & (5.83a)

(To see these connections w,=a@{y/|/Am= —a@Wm/)/ 4, may be used; notice
that normalized real eigenfunctions are defined only up to a factor +1.)

We now express the eigenvalues and normalized eigenfunctions of the
operator L in terms of those of the operator L. To find the normalized functions

!(ﬂ' wa)la Wn)dx = j WH(&GWH) dx=4,
may be used. According to the various boundary conditions in Table 5.1 we have
the following possibilities:

1) Boundary condition B1 (this includes natural boundary conditions) for the
original problem, i.e. B4 for the inverted problem (4o = 0; ay,, = 0)

An=2p1>0;  Un=aW,1/) A1, n=0,1,2,... . (5.101a)

2) Boundary conditions B2 (B3) for the original problem, i.e. B3 (B2) for the
inverted problem

Ap=24,>0; Wp=aw,/Vi,, n=0,1,2,... (5.101b)
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f(x) 1654 Wo-{f Fig. 5.6. Metastable potential model (solid line)
and its lowest eigenfunction (broken line) for
fo=2D

3) Boundary condition B4 for the original problem, i.e. B1 for the inverted
problem

20=0, Ap1=4,>0, Wpi=aw,/V2,, n=0,1,2,.... (5.101¢)
4) Periodic boundary conditions (A= Ao = 0)
An=24,>0, Gp=ay,/Vi,, n=1,2,.... (5.101d)

The eigenfunction , in case 3 and 4 must be obtained from a@ ;= 0. The
eigenvalues and eigenfunctions of the operator belonging to the parabolic poten-
tial and the inverted parabolic potential (Sects. 5.5.1, 2) are examples of
(5.101a,c¢).

Inverting the bistable potential model in Sect. 5.7 gives a metastable potential
model. The lowest eigenvalue of this metastable model is then given by 4,= A,
(5.96) and the corresponding even eigenfunction by (Fig. 5.6)

wo=L *cosvnx/L, 0<sx<L/2
. e (5.92a)
wo=L sinv(L—x)n/L, L/2<x=L.

Here v is defined by (5.95).

5.9 Approximate and Numerical Methods for Determining
Eigenvalues and Eigenfunctions

Because the Fokker-Planck equation can be transformed to a Schrédinger equa-
tion, approximate and numerical methods used for solving the Schrédinger equa-
tion can also be used for solving the Fokker-Planck equation. We now want to
discuss some of these methods which turn out to be quite effective. The Fokker-
Planck equation is equivalent to a certain Langevin equation. The computer-
simulation method for Langevin equations was already discussed in Sect. 3.6,
therefore it will not be repeated here.
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5.9.1 Variational Method

Assuming natural boundary conditions (for other types, see [5.2]) the Sturm-
Liouville eigenvalue problem (5.41, 51, 52) is equivalent to the following varia-
tional problem. The function y which minimizes

2
§ [(%) DO (x) + y? Vs(x)] dx

. (5.102)

fyldx
leads to the eigenfunction g, The minimum of this expression is then the lowest
eigenvalue 4,. The next eigenfunction and eigenvalue are found by minimizing
(5.102) subject to the auxiliary condition

Swowdx=0. (5.103)

Higher eigenfunctions and eigenvalues are found similarly by adding the
auxiliary condition that the function is orthogonal to all previous ones [5.2].
Approximate eigenvalues and eigenfunctions are obtained by the following
procedure. One guesses some of the lowest eigenfunctions which in addition
depend on certain parameters. One then minimizes (5.102) successively subject to
0,1,2,3,... auxiliary conditions. In this way, the parameters are determined,
leading to approximate eigenfunctions and eigenvalues. From the practical point
of view it is preferable to use such functions for the ansatz of the eigenfunctions
so that the integral can be evaluated analytically. As for all variational methods,
the results for the eigenvalues are much more accurate than those for the eigen-
functions and they are most effective for determining the lowest eigenvalues.

Lower and Upper Bounds

By the modified Ritz method of Weinstein [5.13] (see also [5.14]), one obtains
lower and upper bounds for the eigenvalues. Brand et al. [5.15] applied this
method to some Fokker-Planck equations.

5.9.2 Numerical Integration

Let us discuss the numerical integration method for the operator (5.54) of the
Schrodinger equation. The method can also be applied to the Fokker-Planck
operator (5.2) or to (5.51).

First assume that the potential (5.55) is symmetric, i.e. V(x) = V(—x). The
eigenfunctions w and y, must then be either symmetric or antisymmetric. For
the symmetric (antisymmetric) eigenfunction we start integrating at x = 0 with
the initial condition y(0) = A; ¥’ (0) =0 (w(0) =0, y'(0) = A) up to the bound-
ary x = xg for some fixed value of A. (If natural boundary conditions are con-
sidered xg has to be chosen large enough consistent with the desired accuracy of
the cigenvalues.) We then calculate the difference to the given boundary values
and, by varying A, determine the eigenvalues A, as the zeros of this difference.
The eigenfunctions for 4, are calculated in the above steps and can be normalized
by choosing A4 suitably.
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If the potential V(x) is not symmetric but if x;,, Xmax Or both are finite and if
no singularities in the differential equation occur, we start at X = X, (Or at Xpax)
and integrate (5.41) up to Xy (Xmin) Using the boundary condition at X = xp,
(xmax). The eigenvalue A is determined so that at x = x,ax (Xmin) the boundary
condition is also fulfilled. If x .« (xmin) is infinite we have to use an appropriately
large x@0) (x@)). If there are singularities in the differential equation at some
point, one should try an analytical power expansion around this point and use
numerical integration in the other region.

If the potential V(x) is not symmetric and if x,;, = — o and x,,x = o, one
may start at x =0 with the initial condition w(0) = A4, ¥’ (0) = B and integrate
(5.41) in both directions to — o and + o. By a proper choice of B and A both
boundary conditions can be fulfilled. In order to find these values of B and A a
regula falsi method for the two variables may be used. The constant A finally
follows from the normalization (5.42). Numerical integration methods are
usually very accurate even for higher eigenfunctions. In limiting cases, e.g., very
high potentials or very small noise strength D, the numerical integration does not
work. In these cases, however, analytical methods may be suitable, Sect. 5.10.

5.9.3 Expansion into a Complete Set

To solve the Fokker-Planck equation (5.1, 2) one may expand the probability
density into a complete set ¢9(x) satisfying the boundary conditions, i.e.,

W(x,t)=F(x) ¥ c(t) p9(x) . (5.104)
q

The choice of the arbitrary function F(x) will be discussed below. For natural
boundary conditions xpj, = — o and Xp.c= o one may use for ¢9(x) for
instance Hermite functions ~Hg(ax) exp(— a>x?%/2), where a is a suitable
scaling factor. Another possible choice for ¢7(x) is the following. We may con-
struct a system of polynomials orthogonal to a certain weight function [5.16]. As
weight function we may use the stationary solution of the Fokker-Planck equa-
tion. With the latter choice one has the advantage that @9 are adapted to the
problem under consideration. If we use Hermite functions, only the scaling
factor « can be adapted to the problem. The insertion of (5.104) into the Fokker-
Planck equation leads to an infinite system of coupled differential equations for
the expansion coefficients c9. The truncated infinite system may then be solved.
Sometimes the structure of the system of coupled differential equations may be
such that only a finite number M of nearest-neighbor coefficients is coupled, i.e.,
of the form (9.17). Then one can cast the system into the form of the tridiagonal
vector recurrence relation (9.10 or 121) which may be solved by matrix
continued-fraction methods as discussed in Chap. 9. The matrix continued-frac-
tion method has the advantage that a large number of expansion terms in (5.104)
can be taken into account.

The M-nearest-neighbor coupling of the system seems at first glance to be
valid only for very special Fokker-Planck operators. This is, however, not the
case. If the drift and diffusion coefficients are rational functions of x, i.e.,
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Py(x) _ af’+afx+...+af)x™

DW(x) = =
Pyx) af+aPx+... +aDx™

(5.105)

3) 3) (3) .13
D{E)(X): P3(x) _ ﬂ'}] +ﬂ'§ X+...+ﬂ'"]x

Pyx)  af’+aPx+...+af)x™

and if there are natural boundary conditions, one can always find such a system
with M-nearest-neighbor coupling by using Hermite functions and setting F(x)
equal to the product P,(x) P4(x) of the denominators in (5.105). (In (5.105) it is
tacitly assumed that the denominators are different from zero.) Generally, the
function F(x) should be chosen so that M is as small as possible. In [5.17] this
method has been applied to the Fokker-Planck equation of a driven Josephson
junction, where the drift coefficient is proportional to @+ x + (b +cx?) ! and the
diffusion coefficient is a constant. An application to the laser Fokker-Planck
equation, where an expansion into Laguerre functions has been made, will be dis-
cussed in Sect. 12.4.

5.10 Diffusion Over a Barrier

We first apply the Fokker-Planck equation (5.10) to calculate escape rates over a
potential barrier, closely following the work of Kramers [1.17]. Then we want to
calculate the lowest nonzero eigenvalue for a bistable potential and the lowest
eigenvalue for a metastable potential. These types of problems have been exten-
sively treated in the literature [1.6, 7, 5.18 —30]. In this section we are mainly
interested in the case where the diffusion coefficient D is small, or more precisely
where the barrier height Af is much larger than the diffusion coefficient D. As it
turns out, one can get analytic expressions for the escape rate as well as for the
lowest nonzero eigenvalue in a bistable potential in this limiting case. For smaller
Af/D ratios, where no analytic expressions are generally available, one has to
apply numerical methods, which, as discussed in the last section, work for not
too large Af/D ratios.

For very low diffusion constants, the coefficient in front of the second deriva-
tive in (5.54) becomes very small. Therefore one may use singular perturbation
methods [5.31] which have been applied to a bistable potential by Larson and
Kostin [5.23] and Dekker [5.27]. In quantum mechanics, where the same
problem occurs when one goes over to the classical limit, one uses the WKB
method. This method was applied to a bistable potential by Caroli et al. [5.24].
More elaborate methods like the path integral method [5.28] and the Liouville
projection operator method [5.29] have also been applied. In this chapter we are
interested only in the quasi-stationary process. If one starts with a state where the
particles are at the top of the barrier, being unstable, it will decay. The transients
of such an unstable state will be discussed in Sect. 12.5 in connection with the
transients of a laser model.
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f(X) Fig. 5.7. Potential well for calculating the escape rate

5.10.1 Kramers’ Escape Rate

We now want to calculate the escape rate for particles sitting in a deep well near
X = Xpin, Fig. 5.7. We assume that Af/D is very large. Furthermore, we restrict
ourselves to a constant diffusion D, which, according to Sect. 5.1, can always be
achieved by proper transformation. Then the probability current S over the top
of the potential barrier near xp,,, is very small and the time change of the prob-
ability density W(x, t) is also very small. For this quasi-stationary state the small
probability current S must then be approximately independent of x (4.46). In-
tegrating (5.15) with (5.56), i.e.,

)
_D e—f(X)/Da_ [/YPW(x,0)] =S
X

between X, and A we obtain

A
D[/ i) PW (xig, 1) = e/ PW (A, )] = S [ /W Pdx;

Xmin

or if we assume that at x = 4 the probability density is nearly zero (particles may
for instance be taken away) we can express the probability current by the prob-
ability density at x = x g, i.€.,

A
§ = De/Cmin D W (xpin, 1)/ | €/VPdx . (5.106)

*min

If the barrier is high the distribution function near x.;, will be given approxi-
mately by the stationary distribution

W(x, 1) = W(xpig, ) e~V ~SCminl/D (5.107)
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The probability p to find the particle near x;, reads

X2 X
p = W(x, )dx = W(xpp, t) e/Cmin)/D [e=/0/Dx (5.108)

*1 |

Because for small D the probability density (5.107) becomes very small for x
values appreciably different from x_;,, the xy, x, values need not be specified in
detail.

The probability p times the escape rate r is the probability current S. Thus by
using (5.106, 108) we get the following expression for the inverse of the escape
rate:

1 _p_ V72 _qomi T s
—=Z=_fe dx | /@ DPax, (5.109)
r S D 1 Xmin

Whereas the main contribution to the first integral stems from the region around
Xmin, the main contribution to the second integral stems from the region around
Xmax- We therefore expand f(x) for the first and second integrals according to

S0 = fXmin) + L1 Konin) (X = Xyin)? 5.110)
FX) = FCtmax) = 317 Cmar) [(X— Xna)? - '

Then we may extend the integration boundaries in both integrals to + o and thus
obtain the well-known Kramers’ escape rate

re= Q1) /1" Coia) | 1" (i) | € VOmad) ~SOmial/ D (5.111)
As shown by Edholm and Leimar [5.25], one can improve (5.111) by calculating

the integrals in (5.109) more accurately. By using an expansion in (5.110) up to
the fourth term and by evaluating the integrals according to

fetbirelgyy | <l+bx3+cx“+;—b2x“)e“""'zdx

—~ oo - oo

n 3 ¢ 15 b?
= — 1+ —=—=+— —],
a 4 g? 16 o

we get the improved escape rate

() Wy, .
r=rg [1 -D (l. f (x‘“a"}z = l J (x“““)z
8 [f”(xmax)] 8 [f”(xmin)]

1 2 e 2
M B ) OB (xminn})mwz)}. 5.112)
24 If”(xmax) | 24 {f”{xmin)}
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For the inverted potential Fx)= —f(x) we obtain exactly the same escape rates
from the well of fat X,;, = Xmay OVer the barrier of f at ¥,2x = Xpin-

5.10.2 Bistable and Metastable Potential

Let us now calculate the lowest nonvanishing eigenvalue for the symmetric
bistable potential shown in Fig. 5.8a for small diffusion coefficients D. By
inverting the potential we get the metastable potential in Fig. 5.8b. The lowest
eigenvalue 1, of the metastable potential agrees with the lowest nonvanishing
eigenvalue A, of the bistable potential, Sect. 5.8. If the Fokker-Planck equation is
interpreted as a Smoluchowski equation, the lowest eigenvalue of the metastable
potential is the decay rate of particles in the well. In the bistable potential the
lowest nonvanishing eigenvalue describes the transition rate between the left and
right well.

We first look for the symmetric eigenfunction §, and its lowest eigenvalue 1,
of the metastable potential. For reasons discussed below, we assume that at
x = +A the potential jumps to a negative infinite value (absorbing wall,
Sect. 5.4), so that we have the jump condition (5.84). For further considerations
it is useful to transform the eigenvalue equation (5.41) [see (5.35) with D® = D
and (5.56)]

D aix e-f'(x)/Da—i PGy = — Ty (5.113)

into an integral equation. Because of the symmetry of the potential and because
the eigenfunction is symmetric ' and @3 must be zero at x =0 (i.e., the prob-
ability current is zero at x = 0), and by integrating (5.113) we obtain

G R Sy g
D— /P gy= ~ TP [z} dz

—

-f{x) =flx)

h
-A-a

!

-
e

D

>X

Fig. 5.8. Bistable (a) and
(b) metastable (b) potential
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Integrating this equation once more we arrive at the integral equation

Go(x) = € TP | 7P 3 0)

ST

Edyefw”idz@o(z)] | (5.114)

This equation together with the boundary condition
@A)=0 (5.115)

determines the eigenvalue 1, and the eigenfunction .

For large barrier heights the eigenvalue 1,/D will be very small. We may thus
apply the following iteration procedure:
As zeroth approximation we use

G (x) = e TPSOPG ) iV =0.

If we insert this zeroth approximation into the integral of (5.114) we obtain the
first approximation for the eigenfunction

_ _ T(1) x oy _
3§ (x) = e TP OD g (0) (1 - —}5; Jdye/Pfdze/ "””") . G119
0 0
Because of (5.115) the eigenvalue 4, in first approximation is given by
_ A _ y _
AV =D/fdye/VPidze TP, (5.117)
0 0

To obtain the eigenfunction and eigenvalue in second order we insert (5.116) in
the integral of (5.114) and again use (5.115). Higher approximations are obtained
similarly.

For small diffusion coefficients the double integral in (5.117) can be
evaluated analytically. For y = aand z = 0 there is a very sharp maximum of the
integrand exp{[f(¥)—f(z)]/D} for small D. The leading contribution to the
double integral stems from the region near this maximum. We therefore expand
fO») and f(z) around this point (y = a, g = 0) up to second order, as in (5.110).
The integration over y can then be taken from — oo to + oo and the integration
over z from 0 to + o. Notice that the double integral factorizes in this approxi-
mation, leading to the same integrals as in (5.109) (up to a factor + for the first
integral). The eigenvalue finally reads

AN = n_ll "af”(O)"Lf_.”(a) ' e~ V@-fOuD _ 2rg. (5.118)

Because we have two barriers in the potential of Fig. 5.8b, it is not surprising
that the decay rate A is twice the Kramers’ escape rate over one barrier. We have
chosen a finite A in Fig. 5.8b because otherwise the double integral in (5.117)
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y Fig. 5.9. Integration boundary of the double integral and
'y the values of its integrand for the potential in Fig. 5.6
L
ef,,/ D 1
L
2

[ emmmmeem— e — e — - mmm———

IN] I

would diverge. As done for the escape rate, (5.118) can be improved by taking
into account higher expansion terms of the potential near the maximum and
minimum, leading to results in complete agreement with (5.112). (However,
f7"(0) is now zero because f(x) was assumed to be symmetric.)

For the inverted potential of (5.85) (Fig. 5.6) the value of the integrand of the
double integral is indicated in Fig. 5.9. The value of the double integral can im-
mediately be read off Fig. 5.9, leading to

5 4D 4D
l}=7: -j‘th
A coriny 2 (5.119)

which agrees with (5.96) up to the order exp(—2f,/D). Neglecting terms of the
order exp(— 3f,/D) we get in second approximation

- 4 N 2
A&Z’:L—‘?(e fo””—?e %”’), (5.120)

which again agrees with (5.96) but now up to the order exp(—3f,/D).

Bistable Potential

The same method used for the metastable potential in Fig. 5.8b can be used for
the bistable potential in Fig. 5.8a. Because at x = A the probability current must
now be zero (reflecting wall, Sect. 5.4), we obtain for the eigenfunction ¢, the
integral equation

A
01(x) = e /P | SO, (4) - %Id_veﬂ”””'fdz wl(z}] : (5.121)
= * y -

The eigenfunction ¢, belonging to the lowest nonvanishing eigenvalue must be an
odd function for the bistable potential, i.e.,

¢1(0)=0. (5.122)
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The integral equation (5.121) together with (5.122) determine the eigenfunction
@, and the eigenvalue A;,. We may now apply the same iteration procedure as
before. In first order we have

A A
AP = D/( jdyefty)m]dze-ﬂnfﬂ)_ (5.123)
0 ¥

It can be shown by partial integration that this expression agrees with (5.117)

[notice f(x) = — f(x)].

Asymmetric Metastable Potential

To treat the asymmetric metastable potential in Fig. 5.10 we r_1eed only minor
modifications. Because the derivative @) (0) is no longer zero [f’ (0) is still zero]
instead of the integral equation (5.114) we obtain

_ _ _ X - _ 7T x _ y _
@o(x) = e~ /x/D [Cf(o)/D(Do(O) + (j)ef(")/Ddy @4(0) — 30(!(1}, ef(}’)/D(‘!dz ¢0(Z)] .
(5.124)
The eigenfunction @, must vanish at x=A and x =B
Po(A) = @o(B) =0. (5.125)

To solve (5.124) we may apply the same iteration procedure as before. In zeroth
approximation then

@30}( X)=e" L) —F0)/D 70(0)
O=0; iP=0.

Inserting this zeroth solution in the double integral gives

- - x 7(1) x _ -
50(x) = e T/DefO/0 5 ) <1 + [fPdy g - 2" [dye/P]dzeT0)
0 D o 0

(5.126)
where « is given by

a= 3" (0)e 7 O?/3,(0) . (5.127)

The two conditions (5.125) then determine aand A1§". By expanding f(x) near the
maxima of the integrands up to second order [as in (5.110)] we obtain

0 =2m /T O @ e V@TOVP 4 | /Fr(0)| ' (b) [~ VO -TOVD,

R (5.128)
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Fig. 5.10. Asymmetric metastable potential
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X

i.e., the sum of the Kramers’ escape rates (5.111) over the right and left bar-
riers.

Transformation to a Homogeneous Fredholm Integral Equation

The integral equation (5.114) may be transformed into homogeneous Fredholm
integral equation [5.32]. We show this for the metastable potential in Fig. 5.8b.
For the bistable potential the expressions are more complicated because the
stationary solution must be eliminated first by a projection formalism. Partial
integration of (5.114) leads to

u(x):]j(l_’o(}’)d}’ - :;)‘u@) «so(y)dyB :

. . by
Go(x) = e TP {ef O/D 5(0) + 3"

(5.114a)
where we have defined u(x) by
A _
u(x) = fexp[f(y)/Dldy. (5.129)
X
Because of the boundary condition (5.115), i.e.,
s = A oA
Fo(a) = e~ TP {eﬂ"”@o(m =~ Ju0) @o{y}d}’} =0
we may write instead of (5.114a)
_ Ao _ x _ 4 _
Polx) = 3“ e~fw/D [ {I)H(x}woty)dy + ]“U’)%U’)dy] .
X
Using instead of the eigenfunction @y(x) the function
Wo(x) = exp[f(x)/(2D)] Po(x) (5.130)

we obtain the integral equation
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_ A
wo(x) = lo(i)K(X,y) wo(y)dy (5.131)

with the symmetric kernel

K(x,y) = K(,x) = D~ exp{— [f(x) + f())/2D)) - [ ux) pop  F<X
u(y) x<y
(5.132)

Because we can express the second iterated kernel K, in terms of eigenvalues and
eigenfunctions of (5.131) [5.2, Chap. III, (58)]

A —
muxbixmnKmmwmzwanmavﬁ
we obtain

A A A _
[Ky(,x)dx = | [K(x,»)*dxdy = ¥ 1/13. (5.133)
0 00 n

If we assume that A, is much smaller than the other eigenvalues

0<logd;<i<... (5.134)

we get

az[?

For small D, u(x) is approximately constant for x < a. Then the kernel K(x,y)
approximately factorizes and we finally obtain

e b

-1/2
K(x,)')zdxdy—l . (5.135)

_ A A A
Xo=1/[K(x,x)dx = D/ e ™'P < | efWDdy> dx. (5.136)
0 0 x

As may be seen by using partial integration this expression agrees with (5.117).

Mean First-Passage Time for the Metastable Potential

The mean first-passage time 7;(x’) for a particle starting at x = x' to leave the
domain |x| < A can either be obtained by [see (8.5, 9, 10)]

A

Ti(x") = | py(x,x")dx", (5.137)
—A

LFP(x)pl(x’x,)= _6(x_x’)’ (5.138)
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P1(xA,x")=0 (5.139)
or by, see (8.15a),

Lip(x")Ti(x') = —1, (5.140)

T(+A)=0. (5.141)

For the metastable potential in Fig. 5.8b we now calculate 7; for x’ = 0. Because
the potential is symmetric and D is independent of x, py(x,0) and also 7;(x')
must be symmetric in x and x’, respectively. Therefore, the first derivative of
P1(x,0) at x = 0 and of 7;(x") at x' = 0 must vanish. Using

Lep(x)= D2 7o D ofevp
ox ox

(5.142)
Lip(x') = Dl VD 3 e~ fx')V/D 3
ax’ ox’
it is easy to solve (5.137 —139):
A ¥
pi(x,0) = D~ e /D /UVD [ jd{z)dz] dy. (5.143)
X 0

The J function in (5.138, 143) may be replaced by a sharp symmetric function of
finite width. Then the integral over the ¢ function for y >0 is 1/2, giving

A A
Ti(0)= [ py(x,0)dx =2 | p,(x,0)dx
—-A 0
A A
=p-! je-ﬂx}/ﬂ gefb')fﬂdy dx . (5.144)
0 X

The solution of (5.140) with the boundary condition (5.141) and with
dT,/dx' |, _o=0reads (|x'|=A4)

A y
T (x") =D—‘§J(V>/D<§e'f(X>/Ddx> dy, (5.145)
x' 0
i.e., for x' =0

A y _
7,(0)= D! E[)ef(}')/D<(§;e‘f(")/Ddx> dy

=1/28V. (5.146)
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Thus, this expression is equal to the inverse of the first approximation of the
eigenvalue, compare (5.117). It is, however, also equal to (5.136, 144) as may be
seen by using partial integration.

Thus, for the mean first-passage time an exact expression valid for every
potential height and arbitrary diffusion coefficients can be derived. For large
potential heights the double integral can be evaluated analytically as done before.
The inverse of the mean first-passage time is then given by the sum of the
Kramer’s escape rates (5.111) over the left and right barriers.




